Search results for " white noise"
showing 10 items of 30 documents
Probabilistic response of nonlinear systems under combined normal and Poisson white noise via path integral method
2011
In this paper the response in terms of probability density function of nonlinear systems under combined normal and Poisson white noise is considered. The problem is handled via a Path Integral Solution (PIS) that may be considered as a step-by-step solution technique in terms of probability density function. A nonlinear system under normal white noise, Poissonian white noise and under the superposition of normal and Poisson white noise is performed through PIS. The spectral counterpart of the PIS, ruling the evolution of the characteristic functions is also derived. It is shown that at the limit when the time step becomes an infinitesimal quantity an equation ruling the evolution of the pro…
“Hyperethnicity” and Ethnic Scenarios in White Noise by Don DeLillo
2021
The present article aims at analyzing the reshaping of the Italian American cultural heritage in Don DeLillo’s White Noise. Drawing on the concept of hyperreality as construed by Jean Baudrillard, the notion of hyperethnicity proves to be an efficient tool for a thorough exam of the transformation of the crucial Italian American topoi — i.e, ethnic signifiers such as the conception of the family, the theme of the household, and the concept of serietà — in the novel White Noise by Don DeLillo. Analyzing the signs of italianità in novels by Don DeLillo, Fred Gardaphé hypothesizes that the writer enacts a “masquerade” of his cultural identity, encoding in this manner ethnic “traces” into his o…
On the dynamics of non-local fractional viscoelastic beams under stochastic agencies
2018
Abstract Non-local viscoelasticity is a subject of great interest in the context of non-local theories. In a recent study, the authors have proposed a non-local fractional beam model where non-local effects are represented as viscoelastic long-range volume forces and moments, exchanged by non-adjacent beam segments depending on their relative motion, while local effects are modelled by elastic classical stress resultants. Long-range interactions have been given a fractional constitutive law, involving the Caputo's fractional derivative. This paper introduces a comprehensive numerical approach to calculate the stochastic response of the non-local fractional beam model under Gaussian white no…
Non-linear systems under parametric white noise input: digital simulation and response
2005
Abstract Monte Carlo technique is constituted of three steps. Therefore, improving such technique in practice means, improving the procedure used in one of the three following steps: (i) sample paths of the stochastic input process, (ii) calculation of the outputs corresponding to the generated input samples by using methods of classical dynamics and (iii) estimating statistics of the output process from sample outputs related to the previous step. For linear and non-linear systems driven by parametric impulsive inputs such as normal or non-normal white noises, a general integration method requires a considerable reduction of the integration step when the impulse occurs, treating the impuls…
Stochastic analysis of external and parametric dynamical systems under sub-Gaussian Levy white-noise
2008
In this study stochastic analysis of non-linear dynamical systems under α-stable, multiplicative white noise has been conducted. The analysis has dealt with a special class of α-stable stochastic processes namely sub-Gaussian white noises. In this setting the governing equation either of the probability density function or of the characteristic function of the dynamical response may be obtained considering the dynamical system forced by a Gaussian white noise with an uncertain factor with α/2- stable distribution. This consideration yields the probability density function or the characteristic function of the response by means of a simple integral involving the probability density function …
First-passage problem for nonlinear systems under Lévy white noise through path integral method
2016
In this paper, the first-passage problem for nonlinear systems driven by $$\alpha $$ -stable Levy white noises is considered. The path integral solution (PIS) is adopted for determining the reliability function and first-passage time probability density function of nonlinear oscillators. Specifically, based on the properties of $$\alpha $$ -stable random variables and processes, PIS is extended to deal with Levy white noises with any value of the stability index $$\alpha $$ . Application to linear and nonlinear systems considering different values of $$\alpha $$ is reported. Comparisons with pertinent Monte Carlo simulation data demonstrate the accuracy of the results.
Non-linear Systems Under Poisson White Noise Handled by Path Integral Solution
2008
An extension of the path integral to non-linear systems driven by a Poissonian white noise process is presented. It is shown that at the limit when the time increment becomes infinitesimal the Kolmogorov— Feller equation is fully restored. Applications to linear and non-linear systems with different distribution of the Dirac's deltas occurrences are performed and results are compared with analytical solutions (when available) and Monte Carlo simulation.
Path Integral Method for Nonlinear Systems Under Levy White Noise
2017
In this paper, the probabilistic response of nonlinear systems driven by alpha-stable Lévy white noises is considered. The path integral solution is adopted for determining the evolution of the probability density function of nonlinear oscillators. Specifically, based on the properties of alpha-stable random variables and processes, the path integral solution is extended to deal with Lévy white noises input with any value of the stability index alpha. It is shown that at the limit when the time increments tend to zero, the Einstein–Smoluchowsky equation, governing the evolution of the response probability density function, is fully restored. Application to linear and nonlinear systems under…
Probabilistic characterization of nonlinear systems under Poisson white noise via complex fractional moments
2014
In this paper, the probabilistic characterization of a nonlinear system enforced by Poissonian white noise in terms of complex fractional moments (CFMs) is presented. The main advantage in using such quantities, instead of the integer moments, relies on the fact that, through the CFMs the probability density function (PDF) is restituted in the whole domain. In fact, the inverse Mellin transform returns the PDF by performing integration along the imaginary axis of the Mellin transform, while the real part remains fixed. This ensures that the PDF is restituted in the whole range with exception of the value in zero, in which singularities appear. It is shown that using Mellin transform theorem…
Poisson white noise parametric input and response by using complex fractional moments
2014
Abstract In this paper the solution of the generalization of the Kolmogorov–Feller equation to the case of parametric input is treated. The solution is obtained by using complex Mellin transform and complex fractional moments. Applying an invertible nonlinear transformation, it is possible to convert the original system into an artificial one driven by an external Poisson white noise process. Then, the problem of finding the evolution of the probability density function (PDF) for nonlinear systems driven by parametric non-normal white noise process may be addressed in determining the PDF evolution of a corresponding artificial system with external type of loading.